Earth block construction: a sustainable housing solution for the wildland-urban interface (WUI)

Michele Barbato
Professor
Civil & Environmental Engineering
Structural Engineering and Structural Mechanics
University of California - Davis

3/23/2020
Wildfire Induced Air Pollution Mitigation & Assessment Symposium
Outline

- Introduction
- Traditional Earthen Structures
- Earthen Construction: Advantages and Challenges
- Compressed and Stabilized Earth Block (CSEB) Construction
- Feasibility of Earthen Houses
- Wildfire Performance Assessment of CSEBs
Introduction

- Earthen structures built using mainly soil
- Very ancient techniques
- Several economic and sustainability advantages over more modern techniques
- A few significant challenges, particularly for non-engineered earthen structures
- Modern earthen construction techniques developed to address these issues, e.g., earth block construction
- Current research at UC Davis extending the use of earth block construction for fireproof buildings in the WUI
Traditional Earthen Structures (1)

- **Cob**
 - Sand, clay, water, some kind of fibrous or organic material (straw)
 - Soil mix is layered to build earth structures

- **Rammed earth**
 - Mixture of sand, clay, water, fiber, and gravel
 - Soil mix is compacted to build earth structures

- **Adobe/earth blocks**
 - Mixture of sand clay, water, and fibers is used to fabricate blocks
 - Earth structures are built with these blocks
Traditional Earthen Structures (2)

Great Mosque of Djenné in Mali
(300 BCE)

 Portions of the Great Wall built with rammed earth
(300 BCE - 1700 CE)

Pueblo de Taos in USA
(1100 CE – 1500 CE)

City of Potosí in Bolivia
(1600 CE – 2000 CE)

(Gandreau and Delboy 2012)
Earthen Construction: Advantages (1)

 Affordable and locally appropriate
  Soil is a widely available and inexpensive material
  This construction type is widely used around the world

 Indoor air quality and humidity efficient
  Earthen construction can keep the relative humidity of indoor air between 40% and 60%, which is most suitable for human health.

Earth construction areas of the world
(Auroville Earth Institute)
Earthen Construction: Advantages (2)

- Eco-efficient and sustainable
 - The embodied energy of earth buildings is significantly smaller than that of other conventional construction techniques

![Bar chart showing embodied carbon in different masonry materials](Morton et al. 2005)

- Very good isolation properties
 - High R-values, > 30% in HVAC energy savings
Earthen Construction: Advantages (3)

- Good hazard resistance
 - Hurricane resistance
 - Tornado resistance
 - Seismic resistance
 - Non-combustible

Masonry strength demand curves: (a) hurricane effects; and (b) tornado effects (Matta et al. 2015)

Structural detail for seismic-resistant reinforced earth block construction

Windborne debris impact resistance of earth block walls (Cuéllar-Azcárate MC 2016)
Earthen Construction: Challenges

- High variability of soil properties
- Poor durability against wet climates
- Britteness
- Widespread perception as a substandard choice
- Typically not thought in structural engineering curricula

The Ricola Herb Centre in Laufen (Basel), Switzerland

Childcare facility in Glendale, California
Compressed and Stabilized Earth Block (CSEB) Construction

- Masonry built using earth block fabricated by mechanically compressing a chemically stabilized soil mixture
Feasibility of Earthen Houses

- Focus on US Gulf Coast region (wet and humid climate)
- Motivation: need for affordable hurricane-resistant housing
 - 386,000 low-income households in Louisiana need affordable housing (U.S. Department of Housing and Urban Development in 2010)
- Challenges: poor soil quality, hot and wet climate, high wind loads, and cost
- Need for culturally-appropriate solutions
- Investigation performed for:
 - Structural feasibility
 - Architectural feasibility
 - Economic feasibility

(Kumar et al. 2018)
Hurricane Wind Resistance Study

- Strength demand curves developed by Matta et al. (2015)
- Characteristic masonry strength as per Eurocode 6 (CEDN 2005)
 - M09 - CSEB with 09% cement and respective mortar
 - M12 - CSEB with 12% cement and respective mortar

Schematic representation of wind pressures on MWFRS (Matta et al. 2015)

CSEB masonry strength demand curves for hurricane
Durability Study of CSEB Wall

Mechanical properties of CBEBS before construction and after demolition of the wall

<table>
<thead>
<tr>
<th>Tested specimens</th>
<th>MOR</th>
<th>f_{bd}</th>
<th>MOE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average (MPa)</td>
<td>Average (MPa)</td>
<td>Average (MPa)</td>
</tr>
<tr>
<td></td>
<td>COV (%)</td>
<td>COV (%)</td>
<td>COV (%)</td>
</tr>
<tr>
<td>CSEB (initial)</td>
<td>0.57</td>
<td>1.38</td>
<td>31.22</td>
</tr>
<tr>
<td></td>
<td>11.28</td>
<td>6.40</td>
<td>16.98</td>
</tr>
<tr>
<td>CSEB (protected)</td>
<td>0.64</td>
<td>1.79</td>
<td>55.61</td>
</tr>
<tr>
<td></td>
<td>22.68</td>
<td>5.55</td>
<td>20.21</td>
</tr>
<tr>
<td>CSEB (unprotected)</td>
<td>0.37</td>
<td>1.50</td>
<td>44.78</td>
</tr>
<tr>
<td></td>
<td>21.82</td>
<td>13.80</td>
<td>26.82</td>
</tr>
</tbody>
</table>

MOR = modulus of rupture; f_{bd} = dry compressive strength; *MOE* = modulus of elasticity
Cost comparison of different wall systems for reference shotgun prototypes house (1000 Square ft.)

<table>
<thead>
<tr>
<th>Items</th>
<th>Mortarless ICSEB</th>
<th>Mortared CSEB</th>
<th>Light-frame wood</th>
<th>Bricks</th>
<th>Concrete blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material ($)</td>
<td>7,186</td>
<td>6,676</td>
<td>15,638</td>
<td>19,533</td>
<td>12,844</td>
</tr>
<tr>
<td>Labor ($)</td>
<td>20,593</td>
<td>34,674</td>
<td>13,068</td>
<td>27,625</td>
<td>20,255</td>
</tr>
<tr>
<td>Overhead ($)</td>
<td>11,112</td>
<td>16,540</td>
<td>12,264</td>
<td>19,840</td>
<td>13,882</td>
</tr>
<tr>
<td>Total wall cost ($)</td>
<td>38,891</td>
<td>57,890</td>
<td>40,970</td>
<td>66,997</td>
<td>46,981</td>
</tr>
<tr>
<td>Other assemblies ($)</td>
<td>65,110</td>
<td>65,110</td>
<td>65,110</td>
<td>65,110</td>
<td>65,110</td>
</tr>
<tr>
<td>Total cost of house ($)</td>
<td>104,001</td>
<td>123,000</td>
<td>106,080</td>
<td>132,107</td>
<td>112,091</td>
</tr>
<tr>
<td>Wall cost ratio (wcr)</td>
<td>1.00</td>
<td>1.49</td>
<td>1.05</td>
<td>1.72</td>
<td>1.21</td>
</tr>
<tr>
<td>House cost ratio (hcr)</td>
<td>1.00</td>
<td>1.18</td>
<td>1.02</td>
<td>1.27</td>
<td>1.08</td>
</tr>
</tbody>
</table>

- RS Means (2014, 2015) is used for the cost estimation
Wildfire Performance Assessment of CSEBs (1)

- Rising global temperatures are increasing the severity of wildfires across the western United States (Westerling 2018: CEC Report No. CCCA4-CEC-2018-014)

Wildfire simulations for California's 4th Climate Change Assessment projecting changes in extreme wildfire events under a warming climate
Wildfire Performance Assessment of CSEBs (2)

<table>
<thead>
<tr>
<th>State</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Extreme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona</td>
<td>2,143,760</td>
<td>9,590</td>
<td>36,811</td>
<td>34,491</td>
</tr>
<tr>
<td>California</td>
<td>8,896,509</td>
<td>138,821</td>
<td>405,715</td>
<td>240,580</td>
</tr>
<tr>
<td>Colorado</td>
<td>1,674,723</td>
<td>33,461</td>
<td>91,026</td>
<td>113,002</td>
</tr>
<tr>
<td>Idaho</td>
<td>531,676</td>
<td>10,752</td>
<td>31,195</td>
<td>37,624</td>
</tr>
<tr>
<td>Montana</td>
<td>304,960</td>
<td>9,820</td>
<td>24,147</td>
<td>28,955</td>
</tr>
<tr>
<td>New Mexico</td>
<td>553,918</td>
<td>9,287</td>
<td>42,843</td>
<td>38,101</td>
</tr>
<tr>
<td>Nevada</td>
<td>939,019</td>
<td>1,104</td>
<td>7,998</td>
<td>6,989</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>1,310,426</td>
<td>284</td>
<td>383</td>
<td>172</td>
</tr>
<tr>
<td>Oregon</td>
<td>1,191,803</td>
<td>21,642</td>
<td>57,083</td>
<td>74,703</td>
</tr>
<tr>
<td>Texas</td>
<td>7,836,840</td>
<td>73,957</td>
<td>195,366</td>
<td>174,038</td>
</tr>
<tr>
<td>Utah</td>
<td>779,926</td>
<td>8,969</td>
<td>13,863</td>
<td>3,563</td>
</tr>
<tr>
<td>Washington</td>
<td>2,359,166</td>
<td>7,690</td>
<td>15,510</td>
<td>18,508</td>
</tr>
<tr>
<td>Wyoming</td>
<td>193,790</td>
<td>1,461</td>
<td>2,683</td>
<td>4,928</td>
</tr>
</tbody>
</table>
Wildfire Performance Assessment of CSEBs (3)

Reconstruction cost value of residence at risk by state (in $billions)

<table>
<thead>
<tr>
<th>State</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
<th>Extreme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona</td>
<td>$448.74</td>
<td>$2.04</td>
<td>$7.95</td>
<td>$7.73</td>
</tr>
<tr>
<td>California</td>
<td>$3,381.07</td>
<td>$61.92</td>
<td>$189.00</td>
<td>$92.62</td>
</tr>
<tr>
<td>Colorado</td>
<td>$401.65</td>
<td>$9.55</td>
<td>$27.05</td>
<td>$33.66</td>
</tr>
<tr>
<td>Idaho</td>
<td>$122.70</td>
<td>$2.65</td>
<td>$7.52</td>
<td>$9.05</td>
</tr>
<tr>
<td>Montana</td>
<td>$65.55</td>
<td>$2.38</td>
<td>$5.94</td>
<td>$6.96</td>
</tr>
<tr>
<td>New Mexico</td>
<td>$116.66</td>
<td>$2.27</td>
<td>$10.66</td>
<td>$9.23</td>
</tr>
<tr>
<td>Nevada</td>
<td>$247.89</td>
<td>$0.39</td>
<td>$3.21</td>
<td>$2.92</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>$249.75</td>
<td>$0.05</td>
<td>$0.06</td>
<td>$0.03</td>
</tr>
<tr>
<td>Oregon</td>
<td>$297.22</td>
<td>$5.46</td>
<td>$14.33</td>
<td>$18.64</td>
</tr>
<tr>
<td>Texas</td>
<td>$1,717.30</td>
<td>$16.86</td>
<td>$42.97</td>
<td>$32.30</td>
</tr>
<tr>
<td>Utah</td>
<td>$187.62</td>
<td>$3.11</td>
<td>$5.02</td>
<td>$1.19</td>
</tr>
<tr>
<td>Washington</td>
<td>$608.26</td>
<td>$1.92</td>
<td>$4.00</td>
<td>$4.61</td>
</tr>
<tr>
<td>Wyoming</td>
<td>$43.60</td>
<td>$0.36</td>
<td>$0.67</td>
<td>$1.27</td>
</tr>
</tbody>
</table>
Wildfire Performance Assessment of CSEBs (4)

➢ Research Plan

- Characterize fire-induced changes in mechanical properties of CSEBs and CSEB masonry at different temperatures and temperature gradients
- Investigate the integration of other fire hardening systems (roof system and cover, vents, defensible space, etc.)
- Assess smoke toxicity of CSEBs houses compared to light-framed wooden houses

Design code-based fire time-temperature curves
Acknowledgements

- UCOP Lab Fees Program through award LFR-20-651032
- LA BoR Economic Development Assistantship
- LSU Coastal Sustainability Studio
- National Science Foundation through award CMMI #1537078
- Dr. F. Matta (University of South Carolina)
- Ms. Erika L. Rengifo-López (University of South Carolina)
- Mr. Nitin Kumar (University of California - Davis)
- Mr. Robert Holton (Louisiana State University)
Thank you

Questions?

Michele Barbato
Email: mbarbato@ucdavis.edu